九莲宝灯大满贯开火车

English
创新创业Innovation
创新创业
当前位置: 九莲宝灯大满贯开火车  > 创新创业  > 正文
土壤矿物与环境团队在铁氧化物界面镉同位素分馏行为及机制方面取得进展
发布时间:2021-08-12

图1 不同结构铁氧化物界面Cd吸附过程中同位素分馏 (a)针铁矿,(b)赤铁矿,(a)水铁矿

图1 不同结构铁氧化物界面Cd吸附过程中同位素分馏 (a)针铁矿,(b)赤铁矿,(a)水铁矿

图2 镉同晶替代针铁矿过程中同位素分馏行为 (a)同位素质量平衡,(b)矿物转化过程

图2 镉同晶替代针铁矿过程中同位素分馏行为 (a)同位素质量平衡,(b)矿物转化过程

近日,我校资源与环境学院土壤矿物与环境团队副教授殷辉与中国科学院地球化学研究所研究员温汉捷团队合作在铁氧化物界面镉同位素分馏行为及机制方面取得进展,相关研究成果以“Cadmium Isotope Fractionation during Adsorption and Substitution with Iron (Oxyhydr)oxides”为题在Environmental Science & Technology发表。

人类活动造成环境镉(Cd)污染问题日趋严重。重金属Cd具有剧毒性和致癌性,对人与动物健康造成潜在威胁,而理解Cd环境地球化学循环是预测Cd污染环境风险和治理Cd环境污染问题的前提条件。近年来,应用Cd非传统同位素研究其环境地球化学循环、Cd污染溯源和示踪成为环境领域的研究热点。但是,环境中Cd在迁移和转化过程中会发生复杂的界面反应,如在活性矿物界面发生吸附、同晶替代和共沉淀,与有机物络合,植物吸收和膜蛋白转运以及淋溶风化等,可能会导致Cd同位素发生分馏,这限制了Cd同位素进行重金属污染溯源和示踪的应用。铁氧化物是地球关键带中广泛存在的一种活性矿物,对重金属污染物的迁移和转化具有重要调控作用。因此,研究铁氧化物界面Cd同位素分馏行为与机制,对Cd同位素在环境领域的应用具有重要意义。

通过研究Cd在表生环境中常见铁氧化物(针铁矿、赤铁矿和水铁矿)表面吸附和与针铁矿共沉淀过程中Cd同位素分馏行为表明,在吸附过程中铁氧化物表面富集Cd轻同位素,符合平衡分馏模型;在针铁矿(?0.51 ± 0.04‰)、赤铁矿(?0.54 ± 0.10‰)和水铁矿(?0.55 ± 0.03‰)表面分馏量(Δ114/110Cdsolid-solution)相等,且不受外界条件如Cd初始浓度、离子强度和pH值等影响 (图1)。同步辐射Cd K边扩展X射线吸收精细结构光谱(EXAFS)分析表明, Cd在矿物表面形成高度扭曲的[CdO6]八面体, 导致Cd轻同位素的富集。而在针铁矿结晶过程中Cd以同晶替代方式进入针铁矿晶格时,矿物富集Cd重同位素,分馏量为0.22 ± 0.01‰。这与反应过程中水铁矿通过溶解-再结晶机制转化为针铁矿有关 (图2)。

本研究填补了地球关键带中活性矿物界面Cd同位素分馏因子的空白。Cd轻同位素通过吸附富集到铁氧化物、锰氧化物和腐殖酸等活性组分中,这可以解释土壤和沉积物Cd同位素组成比水溶液更轻的现象。特别地,广泛分布在热带和亚热带土壤中的铁氧化物,显著影响Cd同位素分馏行为。该研究加深了对Cd环境地球化学行为的理解,亦指出在应用Cd同位素进行污染溯源和示踪时应充分考虑活性矿物界面Cd同位素分馏对自然和人为源Cd同位素特征的影响。

我校资源与环境学院科研助理严欣然硕士为论文第一作者,殷辉副教授和中国科学院地球化学研究所朱传威副研究员为论文共同通讯作者。该研究得到国家自然科学基金、国家重点研发计划、九莲宝灯大满贯开火车自主科技创新基金等项目的资助。

---友情链接---
九莲宝灯大满贯开火车 中国研究生招生信息网 中国学位与研究生教育信息网

版权所有:九莲宝灯大满贯开火车   党委研究生工作部

地址:湖北省武汉市洪山区狮子山街1号九莲宝灯大满贯开火车    邮箱:yjs@mail.hzau.edu.cn    电话:027-87282049    邮编:430070   

九莲宝灯大满贯开火车-开火车大满贯的水果机